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■ INTRODUCTION
The pharmaceutical industry (Pharma) is currently facing unpre-
cedented challenges. In addition to strategic patent expirations, the
rate of drug launches has been essentially constant for 60 years1

with overall productivity falling since the 1970s.2 Similarly, the
appearance of novel targets to FDA approved drugs, a measure
of industry innovation, has not dramatically improved since the
1980s.3 Although Pharma productivity is a multifaceted pro-
blem, detailed analyses of comprehensive, industry-wide data
indicate that late stage clinical failures are a major contributor
that has been attributed to poor target validation (TV) and the
lack of predictive biomarkers that translate to the clinic.4 In the
spirit of “reinventing innovation”5 Pharma needs to intro-
spectively identify areas for improvement. This communication
considers how choices in drug screening strategies may relate
to target validation issues and influence the probability of iden-
tifying novel medicines.
Target-directed drug discovery (TDD) and phenotypic drug

discovery (PDD) are Pharma strategies that have roots in
distinct but complementary philosophies. Advantages of gene-
specific, reductionist approaches include the formulation and
testing of specific molecular hypotheses. TDD approaches
utilize advances in automation, biochemistry, structural biology,
and chemistry related technologies to provide efficient and high
capacity testing of unprecedented numbers of compounds and
molecular targets.6 In addition, deep mining of cDNA expressed
sequence tags (ESTs)7 and subsequently entire genomes8 led to
the discovery of thousands of unknown genes and the potential for
deep insight into novel drug target biology. Taken together, these
advances in science and technology, in conjunction with the innate
human desire to seek new challenges, contributed to the rapid
adoption of molecular-reductionist views of biology. In contrast,
PDD tests compounds in complex biological systems and monitors
physiological responses with minimal assumptions concerning
the participation of specific molecular targets and/or signaling
pathways.9 Analyses of new molecular entities (NMEs) approved
by the FDA between 1999 and 2008 indicate that for first in class
molecules, 37% resulted from projects that used phenotypic screen-
ing whereas target based screening identified 23%; moreover, the
discovery rate of PDD NMEs was greater than TDD NMEs and
was invariant over the 9-year study period.10 Since significantly
more TDD efforts were conducted during this period,6 the overall
launch rate for first in class drugs underestimates the intrinsic pro-
bability of technical success (pTS) of classic PDD.10

A hybrid of classic phenotypic and target-directed strategies,
which blends the use of physiologically relevant biological
systems with the high throughput and statistical robustness
of modern assay technologies, may have a higher pTS for

launching first in class drugs than either classic PDD or TDD.
Academia has utilized modern phenotypic approaches to study
cell cycle, stem cell renewal, cell migration, metastasis, and
induction of pluripotent stem cells.11−15 However, such
“neoclassic” PDD approaches are not widely used in Pharma
because of concerns about assay performance, statistical
robustness, perceived difficulties in establishing compound
structure−activity relationships (SARs), anticipated limited
applicability of chemoinformatics tools, and the difficulty/
requirement for elucidating a molecular drug target.
The results outlined in this presentation address commonly

perceived issues related to the use of complex biological sys-
tems for modern lead generation. Our data, using an angi-
ogenesis assay incorporating a coculture of primary human
endothelial and stromal progenitor cells, indicate that
phenotypic assays can be statistically robust, can be used to
identify novel compound scaffolds by chemoinformatics
enabled hit expansion, and can provide evidence of compound
structure−activity relationships. Identification of novel molec-
ular targets important to angiogenesis, acetyl Co-A carboxylase
(ACC) and a protein related to cellular β-secretase (β-sec)
activity, demonstrates that PDD provides a means to test
multiple biologically relevant pathways in a target agnostic
fashion. These attributes of PDD enabled the discovery of
chemical scaffolds that were readily differentiated, structurally
and mechanistically, from antiangiogenic agents that constitute
the current standard of care (SOC) and demonstrated in vivo
activity. We conclude that PDD complements gene-specific
target-directed strategies, may mitigate TV risks, and has the
potential to enhance innovation in drug discovery.

■ RESULTS AND DISCUSSION
Phenotypic Assay Systems. Modern phenotypic assays

should capture key aspects of the physiological process such as
relevant cell types, cell−cell interactions, growth factors, signal
transduction pathways, and molecular targets while utilizing
in vitro systems amenable to rigorous statistical validation
and high throughput operations. Angiogenesis is a complex
biological process that requires the migration, differentiation,
physical interaction, and coordinated cellular signaling of pre-
cursor and mature forms of endothelial cells with stromal cells.
Although VEGF is recognized as the dominant proangiogenic
stimulus, other protein factors modulate angiogenesis.16,17

Previously we described and statistically validated an in vitro
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model of neovascularization utilizing a coculture of endothelial
(ECFC) and stromal (ADSC) cell precursors.18 ADSCs have
pericyte-like qualities,19 and collagen-fibrin matrix cocultures
of ECFCs/ADSCs form functional blood vessels in vivo.20

Therefore, the in vitro ECFC/ADSC assay captures multiple
aspects of the biological complexity related to neovasculariza-
tion with minimal assumptions on the relevance of various
signaling pathways and molecular targets. In contrast, use of
cellular assays systems that overexpress or monitor specific
signaling components relies on the accuracy of previous TV
studies and provides focused readouts that may not fully capture
the biological complexity of the system.
Phenotypic Screening and Hit Expansion. Marketed

drugs that inhibit VEGFR and related receptor tyrosine kinases
(RTKs) currently constitute antiangiogenic (AA) SOC.21 In
order to differentiate from AA SOC, we sought to identify
compounds that inhibit endothelial cord formation (ECF) in
vitro via non-kinase mechanisms and do not exhibit undesirable
cellular mechanisms such as overt cytotoxicity or cell cycle
inhibition.18 Approximately 32 000 internal compounds origi-
nating from target biased screening libraries and unrelated
chemical diversity were tested in the ECFC/ADSC coculture
system. The distribution of single point (SP) activity (Figure 1A)
from the medium throughput screen (MTS) is enriched in com-
pounds with high ECF inhibitory activity with 4% of tested
compounds showing activity of >2 STD above the mean,
corresponding to >60% inhibition (Figure 1A, shaded).

Compounds active in SP screening were retested in dose
response; approximately 65% of single point actives were
confirmed. Elimination of actives that were overtly cytotoxic,
inhibited cell cycle,18 associated with kinase activity, or had
unpromising structures resulted in 194 compounds that
inhibited ECF activity with IC50 < 6 uM. These compounds
were subsequently used to search for additional compounds
within the Lilly collection using structure based chemoinfor-
matics approaches and traditional medicinal chemistry
principles. This hit expansion (HE) process and subsequent
compound clustering identified 19 000 compounds that were
tested in SP mode. The SP activity distribution (Figure 1B) from
the first two rounds of HE exhibits a significant enrichment in
active compounds relative to the primary screen (Figure 1) with
nearly 11% and 5% of compounds exhibiting >60% and >90%
ECF inhibition, respectively.
Figure 2 summarizes the discovery of unique chemical

clusters of compounds showing >60% SP ECF inhibition. The
MTS identified a total of 654 active compound clusters, 178 of
which were represented in subsequent HE testing. Significantly,
HE identified 1017 additional active chemical clusters that were
distinct from compounds within the original screening libraries.
Analysis of the compounds that had confirmed ECF activity
without overt cytotoxicity indicates that virtual screening and
chemoinformatics methods such as similarity searching, 2D
scaffold hopping, 3D-ROCS, and machine learning methods
identified active, noncytotoxic compounds. These observations

Figure 1. Screening results of medium throughput in vitro angiogenesis assay. (A) Phenotypic primary screening: activity distribution of single point
testing data of 32 000 compounds. Compounds were tested at 2 μM as described.18 The mean percent inhibition was −8.2%. 3.7% and 1.9% of
tested compounds were ≥2STD and >3STD above the mean (shaded) corresponding to >60% and >90% endothelial cord inhibition, respectively.
(B) Phenotypic hit expansions. Compounds with confirmed endothelial cord inhibition activity, no overt cytotoxicity, and no predicted/known
kinase activity were used as seeds for virtual screening of the Lilly compound collection as described in Experimental Section. 19 000 compounds
relating to similar structures and novel scaffolds were identified and tested as described for the primary screen. The observed mean of the single point
data distribution is significantly shifted toward higher cord area inhibitory activity (10%) with 10.6% and 4.8% of tested compounds exhibiting >60%
and >90% inhibition, respectively (shaded).

Journal of Medicinal Chemistry Perspective

dx.doi.org/10.1021/jm201649s | J. Med. Chem. 2012, 55, 4527−45384528



indicate that structure−activity relationships can be successfully
modeled with phenotypic end points to identify active novel
chemical diversity even when MOA and exact molecular
target(s) are unknown.
Biological Diversity of Phenotypic Actives. Mining of

biological activity databases in conjunction with results
visualization using heat maps composed of target class
phylogenetic trees provides a means to visualize known and
predicted biochemical activity and selectivity of compounds.22

Figure 3A summarizes the activity profiles of four confirmed
actives from the ECF screen; three compounds show pre-
dominant kinase, GPCR, or NHR activity with multiple
activities observed within and across target families (Figure 3A).
Follow-up on SP actives from hit expansion 1 (Figure 1B) iden-
tified 451 compounds that inhibited angiogenesis in a dose
dependent manner with IC50 ≤ 3.5 uM and exhibited desired
cell cycle and cytotoxicity phenotypes.18 Figure 3B summarizes
the ECF potency and predominant molecular target class known
to be modulated by these compounds. Potent ECF inhibition is
observed for compounds with known kinase activity (31.9%),
an expected result given the known importance of VEGF and
RTKs to angiogenesis.17,23 Interestingly, potent ECF inhibition is
observed with compounds with known activities on GPCRs
(21.5%), NHRs (4.9%), and PDEs (2.4%), target families not
commonly associated with angiogenesis (Figure 3B). Significantly,
39.2% of ECF inhibitors and their structural analogues did not
have activity in any biochemical assay in which they were tested
(Figure 3). Although this analysis suffers from the caveat that

compounds are not systematically tested in all available bio-
chemical assays, an issue that is somewhat mitigated by inter-
rogation of databases with compounds that are structurally similar
to query molecules, the approach provides an overall view of the
biochemical activities associated with ECF inhibitors derived from
phenotypic screening. These results are consistent with the notion
that phenotypic lead generation broadly interrogates multiple
signaling pathways and molecular targets in an unbiased fashion.
Although speculative, the high percentage of confirmed inhibitors
with unknown biochemical activity (Figure 3B) suggests that PDD
readily identifies compounds that utilize novel mechanisms and/or
molecular targets.

Differentiation of Phenotypic Actives from Standard
of Care. Pharma seeks to identify novel therapeutics that are
clearly differentiated from and are therapeutically superior to
competitor’s compounds. The first approved SOC small mole-
cule inhibitors of angiogenesis were Sutent and Nexavar, which
are multitargeted RTK inhibitors that potently act on VEGFR2
and PDGFRβ24 and are approved for use in metastatic renal
cell carcinoma. The broad biological and chemical diversity of
the confirmed ECF inhibitors from the phenotypic screen
(Figures 2 and 3) increases the likelihood of identifying AA
compounds with novel mechanisms of action (MOA). In order
to maximize differentiation from SOC AA, only compounds
that did not exhibit biochemical kinase activity were considered
further. Similarly, compounds that exhibited overt cytotoxicity
or cell cycle inhibition, undesirable cellular AA mechanisms,18

were eliminated. Finally only compound scaffolds that had pro-
mising structures, were amenable to synthetic chemistry, and
possess favorable druglike/physical properties compounds
were advanced. Use of multiple and rigorous exclusion criteria
enhances the pTS of identifying safe and efficacious druglike
molecules, an exercise more relevant to pharmaceutical research
than academia where investigating basic biology and identifying
novel molecular targets and MOAs are valued.
Multiple compound scaffolds fulfilling many of these filter

criteria were identified through the phenotypic screen (not
shown). The structures of two exemplary ECF inhibitors are
shown in Figure 4A. Figure 4B summarizes the in vitro activities of
compounds A and B, their phenotypic profiles, and a comparison
to SOC AA drugs Sutent and Nexavar. Compounds A and B
inhibit endothelial cord formation with potencies ranging from
21 to 41 nM without overt cytotoxicity in the coculture system,
results that are comparable to those of SOC (Figure 4B). Sig-
nificantly, the PDD approach readily identified compounds that
inhibit ECF through non-kinase mechanisms (Figure 4B), an
important point of differentiation from SOC and potentially useful
for the development of therapeutics for clinical combination
with marketed drugs. Significantly, compound A and Sutent both
exhibited dramatic in vivo inhibition of angiogenesis in mice
bearing U87MG xenograft tumors (Figure 5).

Compound Structure−Activity Relationships and
Phenotypic Assays. In order to optimize screening actives,
medicinal chemists require in vitro assays that detect compound
SAR. It is commonly believed that once active molecules have
been identified by phenotypic screens, they are best optimized
using gene-specific biochemical assays,24−26 suggesting that assays
utilizing complex biological systems lack statistical robustness
which limits their SAR utility. Although cell based assays are
generally more difficult to enable and validate than biochemical
assays, the collective Lilly experience with assays monitoring vari-
ous cell cycle related end points,27 secretion of ApoE and insulin,
endothelial cord formation, osteoblast-like differentiation,18 and

Figure 2. Phenotypic actives are structurally diverse. Unique
compound clusters observed during the medium throughput screen
and hit expansion phases are indicated. Screening actives were
confirmed and triaged as described in the text; 194 compounds were
used as “seeds” for similarity searching and scaffold hopping by
chemoinformatics interrogation of the Lilly compound collection for
the first round of hit expansion. The number of unique clusters
corresponding to active compounds (single point activity >60%) from
the 32 000 compound primary screen and the collective 19 000
compounds from two hit expansions are indicated. Of the 1195 active
compound clusters identified after hit expansion, 178 clusters (∼4700
compounds) were observed in the medium throughput screen and
1017 clusters (∼8800 compounds) were novel active chemical
scaffolds. 476 chemical scaffolds (∼4300 compounds) active in the
screen were either deprioritized using criteria given in the text or were
inactive upon retest.
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Figure 3. Phenotypic actives utilize diverse molecular mechanisms. 451 confirmed inhibitors of endothelial cord formation (IC50 < 3.5 μM) which
did not display overt cytotoxicity or cell cycle activity18 were identified following hit expansion 1. (A) Visualization of known and predicted
biochemical activities of four endothelial cord formation inhibitors using a heat map display based on the phylogenetic diagrams of the kinase,
GPCR, NHR, and PDE target families.22 Phenotypic actives with predominant biochemical activities in kinase, GPCR, or NHR target families are
indicated; a compound without identified activity is designated “unknown”. Color coding is as follows. Red indicates potent activity (EC50 or IC50 of
≤10 nM). Green indicates poor activity EC50 or IC50 of >10 uM). (B) Distribution of endothelial cord inhibition potencies for confirmed phenotypic
actives. Results of database mining were visualized using the phylogenetic-activity display, and compounds were classified on the basis of their
predominant biochemical activities or designated “unknown” if no tested or predicted activity was associated with the compound. The predominant
target class of phenotypic actives is indicated with the total number of molecules and percentage of molecules found in each target class (inset).

Journal of Medicinal Chemistry Perspective

dx.doi.org/10.1021/jm201649s | J. Med. Chem. 2012, 55, 4527−45384530



cell migration28 indicates that complex cell based assays can
support SAR if effort is taken in the design, statistical validation,29

and operation of the assay.18,22,27,28

By use of statistically validated biochemical, cell based sub-
strate phosphorylation and phenotypic end points to system-
atically compare the SAR of ∼1000 cell cycle kinase inhibitors,
Low et al.22 demonstrated that phenotypic readouts respond to
compound structural modifications in an equivalent manner
as biochemical and cell based phosphorylation assays when
linkage between molecular target and phenotype exists.
Similarly, the differential ECF activity of the four diastereomers
of compound A (Table 1) suggests that the angiogenesis
coculture assay is able to detect specific interactions between
the compounds and their respective molecular target(s). The
similar potency shifts observed between two phenotypic assays,

the ECFC/ADSC angiogenesis and the functional β-secretase
assays (Table 1), suggest that the diastereomers work through
a specific, although unknown, ligand−protein interaction.
Although investigators have expressed concerns about the ability
of phenotypic assays to support SAR24−26 and the optimization of
molecular properties,10 our experience (Figure 6, Table 1)18,22,27,28

and the results of others30 indicate that this is not a general issue.
Phenotypic Actives and Mechanism of Action.

Questions related to the identity of putative molecular drug
targets inevitably arise during discussions of PDD. Mining of
biochemical activity databases is one method to identify
molecular targets associated with a phenotypic activity. Data
mining of 1100 ECF inhibitors (IC50 < 2.5 μM) that were not
filtered for kinase or cell cycle inhibition identified clusters of
biochemical activities associated with kinases involved with

Figure 4. Comparison of phenotypic actives with antiangiogenesis standards of care. (A) Structures of two compounds identified by the phenotypic
endothelial cord assay. (B) Functional comparison of phenotypic actives and antiangiogenesis standard of care, Sutent and Nexavar. The biochemical
kinase activity for each molecule is summarized in the kinase phylogenetic-activity display. Color coding is as follows. Red indicates potent activity
(EC50 or IC50 of ≤10 nM). Green indicates poor activity EC50 or IC50 of >10 uM). Phenotypic characterization and determination of EC50 and IC50
values used statistically validated assays as summarized in Experimental Section.
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angiogenesis (Abl, CSF1R, EphBs, FGFRs, Flts, KDR, NTRKs,
PDGFRs, and Src) and cell cycle (Aurora, CDKs, and CHEK)
as expected (not shown). ECF inhibitors with known activities
associated with adrenergic α-1B and α-2C and serotonin 2A
and 2C receptors were observed; however, follow-up testing

with additional compounds targeting these GPCRs did not
result in activity correlations between GPCR and ECF activity
(data not shown) even though these receptors have been
implicated in angiogenesis in other experimental systems.31−33

These results highlight the importance of signaling and cellular

Figure 5. Inhibition of angiogenesis in vivo. Mice bearing U87MG xenograft tumors were treated with vehicles, compound A (30 mg/kg) or Sutent
(10 mg/kg), administered twice a day for 3 days as described in Experimental Section. Tumors were removed, fixed, sectioned, stained, and
examined by fluorescence microscopy as described in Experimental Section. Total cell number (Hoechst 33342) and the extent of blood vessel
network formation, pericyte coverge, and tumor hypoxia were monitored with antibodies to CD31, smooth muscle actin, and Glut-1 respectively.
Color coding is as follows: green = CD31 (endothelial tubes); blue = total nuclei; red = smooth muscle actin; yellow = Glut-1.

Table 1. Structure−Phenotypic Activity Relationshipsa

aThe potencies of compound A diastereomers were determined in cellular assays measuring inhibition of endothelial cord formation (cord area),
ECFC/ADSC cytotoxicity (nuclear count), functional β-secretase, and γ-secretase activities as summarized in Experimental Section. The decrease in
compound potency relative to the 1S,2S diastereomer is indicated in parentheses.
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context in the linkage of a molecular target to a biological
phenotype.
Mining of biochemical activity data also identified ACC and

functional β-sec as potential molecular targets associated with
AA activity (not shown). Cellular inhibition of ACC by various
compound B analogues demonstrated good potency correla-
tions with inhibition of ECF in the ECFC/ADSC coculture
system (Figure 6A). In addition, inhibition of ECF was
observed with a series of structurally distinct, nonspiro ACC
inhibitors and soraphen A, a natural product that is a potent
ACC inhibitor34,35 (data not shown). Taken together, the activity
correlations between inhibition of ECF and cellular ACC activity
with three structurally distinct compound series suggest that
ACC is a likely molecular target for ECF in the ECFC/ADSC

coculture system. A role of ACC in angiogenesis has not been
previously documented; moreover, existing studies predict that
inhibition of ACC via phosphorylation of Ser 77 would lead to
increased angiogenesis36,37 rather than inhibition of angiogenesis
as experimentally observed (Figure 6A).
Functional correlation between inhibition of cellular β-sec

and ECF activity was observed with over 300 analogues of
compound A (Figure 6B, inset). In order to better characterize
the MOA of this series, a subset of these analogues was tested
in a proteolysis assay using recombinant IgG construct of the
BACE-1 ectodomain38 and a cellular assay that monitors the
γ-secretase mediated cleavage of a recombinant Notch-1
construct39 (Figure 6B). Although γ-secretase has multiple
roles in angiogenesis (reviewed in ref 40), each of the 15

Figure 6. Molecular targets of phenotypic actives identified by compound structure−activity correlations. (A) Cell based activity correlation between
inhibition of acetyl-CoA carboxylase and endothelial cord formation activities for 29 analogues of compound B. Linear regression line is indicated, R2 =
0.81 with p < 0.001. (B) Cell based activity correlation between inhibition of cellular β-secretase and endothelial cord formation activities for 306
analogues of compound A. Linear regression line is indicated, R2 = 0.65 with p < 0.001(inset). A subset of 15 compound A analogues were further tested
for activity in biochemical BACE and cellular γ-secretase assays as summarized in Experimental Section. Linear regression line is indicated, R2 = 0.95
with p < 0.001.
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compound A analogues had undetectable inhibition of Notch-1
cleavage up to 5 μM (not shown) whereas ECF inhibition and
functional
β-sec activity was potent and highly correlated over a 1000-fold
concentration range (Figure 6B). These functional β-sec
inhibitors also had no discernible effect on proteolysis catalyzed
by purified BACE-1-IgG (not shown), suggesting that
inhibition of the functional β-sec activity by these analogues
may involve (1) additional cellular BACE-1 accessory
proteins,41,42 (2) BACE-1 dimer interactions that occur in a
cellular context but not in BACE-1-IgG,43,44 or (3) a protease,
distinct from BACE-1, but that has somewhat overlapping cellular
activity. In contrast to the well-known roles of γ-secretase in
angiogenesis,40 the potential function of BACE-1 or cellular β-sec
activity in angiogenesis has been described, to our knowledge, in
one publication.45

Taken together, these results illustrate how PDD approaches
agnostically and simultaneously interrogate multiple molecular
targets and signaling pathways of direct biological relevance in
a manner that is independent of the veracity of prior target
validation studies.46

Phenotypic Deconvolution and Molecular Targets of
Approved Drugs. The identification of novel molecular
targets related to angiogenesis suggests that thorough activity
profiling may facilitate the deconvolution of phenotypic actives
(Figure 6). This approach is limited by the lack of biochemical
profiling data due to the operational costs and limited availability
of assays needed for comprehensive compound characteriza-
tion. As a result, 39% of the confirmed ECF inhibitors and
their structural analogues did have known biochemical activity
(Figure 3). The difficulty and uncertainty related to the identi-
fication of molecular targets for phenotypic actives have been
commonly considered a weakness of the PDD approach. In this
regard it is important to better understand the scientific, drug
discovery, and regulatory rationales that underlie this viewpoint.
Life scientists currently enjoy ready access to information on

the composition and expression patterns of genes at a genomic
scale and possess an unprecedented ability to manipulate and
measure biology at the molecular level. Such reaching
capabilities have contributed to a molecular-centric view of
contemporary biology that may contribute to misconceptions
regarding the level of molecular target detail that is required for
regulatory submission of an NME. Guidance from the Center
for Drug Evaluation and Research and the Center for Biologics
Evaluation and Research at the Food and Drug Administration
indicates that identification of the molecular target for a drug is not
required for initiation of clinical trials (http://www.fda.gov/
downloads/Drugs/GuidanceComplianceRegulatoryInformation/
Guidances/ucm071597.pdf).47 Accordingly, 29% of the small
molecule NMEs approved by the FDA from 2001 to 2004
(excluding natural products or imaging agents) did not have known
molecular targets.48

The “one drug, one target paradigm”, a hallmark of gene-
specific TDD strategies, sought to minimize off-target side
effects.49 However, analysis of known drug−protein inter-
actions has put this “magic bullet paradigm” into question;
target specificity is rare for approved drugs with “known”
molecular targets.3,50 Analyses of 890 approved drugs indicate
that 788 share molecular targets with at least one other drug.3

Extensive mining of seven databases by Mestres et al.50 indicate
that on average each drug interacts with six known molecular
targets. Given the overall poor target selectivity of known
drugs3,50 and that identification of molecular targets is not

required for FDA approval, we feel that in vivo efficacy and
safety should be the principle criteria for advancing phenotypic
therapeutics.

Pharma Reality, Target Validation, and Phenotypic
Drug Discovery. Productivity issues in the pharmaceutical
industry are multifaceted and have been the subject of many
editorial and review articles.1,4,51,52 Analysis indicates that late
stage clinical failures remain the primary reason for poor
Pharma productivity,4 which has been attributed to poor target
validation and the lack of predictive biomarkers that translate
to clinical studies.4,53 Clinically relevant target validation goes
beyond mRNA expression profiling and is a difficult, time-
consuming process that requires successful integration of
biology, chemistry, and pharmacology.24,46,54−58 Notable fail-
ures in preclinical TV that were invalidated only after
compounds advanced to clinical trials include farnesyl trans-
ferase,59 matrix metalloproteases,60 and neurokinin receptor.61

Edwards et al. highlighted the difficulties and high risk associated
with TV and suggested that these activities may be best suited for
an open access Pharma consortium56 where precompetitive TV
data are shared.
TV difficulties have also lessened the impact of the genomics

revolution on drug discovery.51,57 Analysis of the molecular
targets for launched drugs from the mid-1980s to mid-2000s
reveals that the appearance of new targets has been nearly
constant (5 per year) for the past 20 years.3,62 Moreover, the
appearance rate of novel drug targets was not significantly
increased by the availability of novel molecular targets identified
by deep EST sequencing.7 In addition, difficulties in TV46,58

and the widespread use of gene-specific TDD approaches in
Pharma may have focused drug discovery efforts onto a
relatively small set of highly validated molecular targets, a
scenario that is conceivably related to decreased Pharma
innovation and increased numbers of “me too” drugs.3

In contrast to gene-specific TDD approaches, PDD strategies
directly interrogate complex biological systems in a molecular
agnostic manner. If care is taken to develop in vitro biological
systems that capture key aspects of the relevant in vivo biology,
PDD expands the molecular playing field from a single
molecular target and function to multiple processes, signaling
pathways, and molecular functions/targets. It follows that PDD
approaches enable the direct chemical interrogation of
physiologically relevant biology in a manner that is independent
of the target validation status of specific molecular components.
This notion that PDD strategies may mitigate TV risk is
consistent with Swinney’s observation that PDD approaches led
to a higher discovery rate of first in class NMEs approved by
the FDA between 1999 and 2008.10

Given the views that late stage clinical failures may be due, in
large part, to inadequate TV,4 it may be useful to reevaluate
how the choice of a lead generation strategy, one of the earliest
decision points in the drug development process, may impact
overall pTS. It is noteworthy that the majority of phenotypic
assays that identified the majority of first in class NMEs utilized
low throughput, physiology based animal or tissue systems
and/or tested selected compounds based on prior knowledge.10

These classic PDD approaches are more difficult and lower
throughput than target-based approaches which readily
incorporate advances in lab automation and high throughput
chemical diversity testing. As a result, TDD approaches have
become the predominant lead generation strategy used by
Pharma.6 We have explored a “neoclassic” hybrid of traditional
phenotypic and target directed drug discovery approaches that
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blend the use of physiologically relevant biological systems with
the high throughput and statistical robustness offered by
modern technologies. We find that common concerns related
to PDD in regard to assay performance, statistical robustness,
difficulties in establishing compound structure−activity rela-
tionships, and applicability of chemoinformatics tools are not
necessarily realized (Figures 1−6, Table 1).18,27,28 Identification
of phenotypic actives that inhibit ACC and cellular β-sec
activity, novel biochemical targets involved in angiogenesis
(Figure 6), demonstrates that PDD provides a means to
agnostically interrogate multiple, biologically relevant pathways
and molecular targets in a manner that is independent of their
validation status in the scientific literature.46,58

Estimates of the “druggable genome” indicate that roughly
1100 molecular targets have significant primary sequence
homology to known drug targets,3,62 suggesting that greater
than 95% of the predicted proteins encoded by the human
genome8 are not modulated by current therapeutics. Results
from phenotypic testing of compounds accepted to the Lilly
PD2 initiative demonstrate that small molecules with chemical
diversity significantly different from internal collections and
known drugs and are therefore likely to have distinct molecular
mechanisms63 had high confirmed hit rates (2−10%) and
excellent selectivity between five phenotypic assays.18 This
observation suggests that high throughput, modern PDD
approaches in conjunction with novel chemical diversity pro-
vides a means to access novel molecular targets and cellular
mechanisms18 and emphasizes the importance of academic−
industrial collaborations like the Open Innovation Drug
Discovery initiative (https://openinnovation.lilly.com/dd/).
Chemical diversity is large, and biology is complex. New

approaches are needed to enhance our ability to find novel and
efficacious therapeutics. Our results indicate that novel
chemical diversity in conjunction with a modern, neoclassic
PDD strategy may provide a means to identify molecules that
modulate physiologically relevant signaling pathways and novel
molecular targets, decrease TV risk, and increase the pTS of
translating preclinical to clinical results.

■ EXPERIMENTAL SECTION
Assays. All cell growth and cell based assay incubations were

conducted at 37 °C in a humidified incubator at 5% CO2 unless
otherwise noted. The in vitro angiogenesis model was operated in a
384-well format utilizing a coculture of endothelial and stromal
precursor cells, ECFC (Endgenitor)64 and ADSC (Zen Bio),20

respectively, as described.18 The CD31 positive cord area channel
was used for single point screening at 2 μM compound; screen actives
were confirmed using a 10-point dose response curve utilizing CD31
cord area and total nuclei count as a measure of ECF activity and overt
cytotoxicity, respectively.18 ECFC migration was quantitatively
measured using the Oris cell migration plates (Platypus Technologies,
LLC, Madison, WI) as described.28 Cell cycle arrest in G2 or M phase
was measured in HeLa (ATCC CCL-2) cells as described.18,27

Enzymatic activity of soluble human BACE was measured by
hydrolysis of a labeled peptide substrate by a purified BACE-IgG
construct.38 Functional γ-secretase activity was measured in HEK293
cells (ATCC CRL-1573) expressing recombinant human APP by
monitoring the production of soluble of APPsβ as described38 but
using an ELISA format and a Lilly propriety mouse monoclonal
antibody to the β-secretase neoepitope of hAPP. Functional γ-
secretase activity was measured in HEK293 cells expressing a human
Notch-1 construct, analogous to the constitutively active mouse
NotchΔE39 lacking an extracellular ligand binding domain. Cellular
γ-secretase activity was measured with a Lilly propriety mouse
monoclonal antibody to the γ-secretase neoepitope of human Notch-1.

Cellular acetyl CoA carboxlyase activity was measured by incorpo-
ration of [14C]acetate into triacylglycerol (TAG) using modifications
of published procedures.65,66 In short, HEK293 cells were switched
from growth medium, DMEM medium supplemented with 10% fetal
bovine serum and 1% antibiotic−antimycotic (Gibco), to Opti-MEM
medium containing the designated compound concentration in 0.2%
DMSO. After 1 h, fatty acid labeling was initiated by addition of
30 μM [14C]acetate (Amersham, CFA13). After 4 h, the medium was
removed and samples were washed with Hank’s balanced salt solution
and aspirated dry. Cells were dissolved with Triton X-100 (0.175%)
containing basic ethanol and isopropanol at room temperature.
Labeled TAG was extracted into a heptane phase and measured by
liquid scintillation counting. In vitro assays were statistically validated
for run to run plate uniformity by determining the Z′ score67 between
plates of minimum and maximum assay signals. Compound potency
reproducibility was validated for day to day variation by using the
minimum significant ratio (MSR)29 determined for at least 20 com-
pounds of varying potency. Assays passed Eli Lilly−NIH Chemical
Genomics Center guidelines for assay enablement and statistical
validation; Z′ > 0.4 and MSR ≤ 3 (http://spotlite.nih.gov/assay/index.
php/Table_of_Contents).

In Vivo Xenograft Studies. U87MG glioblastoma tumor cells
were mixed 1:1 with Matrigel (BD Biosciences) and implanted
subcutaneously in the right rear flank of athymic nude female mice
(Harlan) at 5.0 × 106 cells/injection. Xenografts were grown to an
average tumor volume of 250 mm3, and the mice were randomized at
baseline according to tumor volume and body weight (10/group).
Compound A was formulated in 100% peanut oil as the vehicle and
administered as subcutaneous injections twice daily for 3 days. Sutent
was formulated in 10% acacia and admistered by oral gavage twice
daily for 3 days. Three days after treatment, xenografts were excised
and placed into zinc-Tris fixative (BD Pharmingen). Tumors were
blocked in paraffin and sectioned as 4 μm slices. Slides were baked at
60 °F for 1 h and then deparaffinized in xylene (4 × 10 min);
rehydrated with ethanol/water immersions with final washes in TBST;
blocked with protein block (Dako) for 30 min; stained with a
combination of Hoechst 33324, rat anti-mouse CD31 (Pharmingen)/
anti-rat Alexa-488 (Invitrogen), rabbit anti-GLUT1 (Dako)/anti-rabbit
Alexa 647 (Invitrogen), and mouse anti-smooth muscle actin/Cy3
(Sigma); imaged using a Marianas digital imaging workstation configured
with a Zeiss Axiovert 200M inverted fluorescence microscope (Intelligent
Imaging Innovations).

Hit Expansion. Several rounds of HE were executed using a variety
of virtual screening technologies. Substructure and similarity searches
utilizing structural fingerprints, Tanimoto similarity, and internal
measures were used to fill existing active clusters with structurally
similar analogues to explore structure−activity relationships. In order
to investigate chemical space not represented in the screening libraries,
2D scaffold-hopping (Lilly tools using 2D pharmacophore descrip-
tors), 2D SVM models,68 and 3D ROCS (http://www.eyesopen.com/
rocs) searches were used. Structural clusters were defined by an internal
program that utilizes a variant of leader clustering and Taylor−Butina
cluster algorithm68 and several internal chemoinformatics similarity
measures.

Data Mining and Visualization. Pharmacology and biochemical
database mining was enabled by a Lilly program that takes a list of
query compounds and comprehensively searches internal and external
in vitro data associated with the compounds and their structural ana-
logues. The resulting data are visualized either as a heat map of compound
activity verses molecular target or as a phylogenetic diagram of GPCR,
kinase, NHR, and PDE target families (human kinome provided courtesy
of Cell Signaling Technology, Inc., www.cellsignal.com) with color coded
biochemical activity. In both visualization methods, red indicates high
activity (EC50 or IC50 of ≤10 nM) and green indicates low activity (EC50

or IC50 of >10 uM).
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